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Abstract. We calculate the processes e+e− → 4π and τ → ντ4π to O(p4) in the low-energy expansion of
the standard model. The chiral amplitudes of O(p4) can be extended via resonance exchange to energies
around 1GeV. Higher-order effects have been included in the form of ω, a1 and double ρ exchange and by
performing a resummation of the pion form factor. The predicted cross sections and the branching ratios
BR(ρ0 → 4π) are in good agreement with the available data.

1 Introduction

Electron–positron annihilation into hadrons has played
an important role in the development of modern particle
physics. Precise knowledge of the cross section is essen-
tial for many purposes, in particular for the determination
of the hadronic contribution to the anomalous magnetic
moment of the muon and for running the fine-structure
constant up to MZ to analyse electroweak precision mea-
surements.

At high energies, the inclusive cross section can be cal-
culated in QCD. It provides one of the standard tests of
QCD allowing for the extraction of the strong coupling
constant. At energies below approximately 2GeV, the dif-
ferent exclusive channels are measured separately. As per-
turbative QCD cannot be applied to those exclusive pro-
cesses the theoretical challenge consists in modeling them
in a way that is at least consistent with QCD.

At very low energies (E << 1GeV), the most reli-
able approach is furnished by chiral perturbation theory
(CHPT), the systematic low-energy effective theory [1–3]
of the standard model. Although the low-energy expan-
sion of CHPT breaks down at typical hadronic scales of
O(Mρ) it can still provide important constraints on how
to match the low-energy amplitudes to the intermediate-
energy region governed by meson resonance exchange [4,
5]. A simple but very illustrative example is the pion form
factor measured in e+e− → π+π− that can be continued
from threshold to the region beyond 1GeV in a straight-
forward way [6–8].

Inspired by this success and by the phenomenological
importance of four-pion production, especially for the cal-
culation of α(E), we have undertaken a systematic study
of e+e− → 4π in CHPT (with the two possible charge
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configurations 2π0π+π−, 2π+2π−). At first sight, this does
not appear very promising with the threshold E = 4Mπ �
560MeV already in the vicinity of the most prominent me-
son resonance, the ρ meson. However, once again the chiral
amplitudes of O(p4) can be continued into the resonance
region, and the decay rates Γ (ρ → 4π) can be calculated
with reasonable accuracy. We will also consider the energy
dependence of cross sections for E ≤ 1GeV.

There is an essential difference between the two- and
four-pion modes. Whereas the two-pion amplitude is com-
pletely dominated by ρ exchange even beyond 1GeV, the
situation is much more involved for four-pion final states
where at least ρ, ω and a1 exchange are relevant (see, e.g.,
[9–11]). It is then all the more important to have unam-
biguous theoretical guidelines for the construction of those
amplitudes such as the correct low-energy behaviour dic-
tated by QCD.

In addition to electron–positron annihilation, multi-
pion final states can also be studied in τ decays (for re-
views of the theory see, e.g., [12,13]). In the limit of isospin
symmetry, which will be assumed throughout this paper,
both the two- and the four-pion modes are related. There
is again an important difference between the two modes.
Whereas the annihilation amplitude and the decay am-
plitude for two pions in the final states are in one-to-one
correspondence, the situation is more subtle in the four-
pion case [13]: given the amplitude for e+e− → 2π0π+π−
or for τ− → ντ2π−π+π0, the three remaining annihila-
tion and decay amplitudes are uniquely determined but
not vice versa. Therefore, in the isospin limit it is suffi-
cient for a complete determination of all four amplitudes
to construct the amplitude for the 2π0π+π− channel only.
All calculations in this paper will be performed for this
particular channel.

In Sect. 2 we collect the kinematics, matrix elements
and cross sections for the process e+e− → 4π. We re-
call the isospin relations relating e+e− annihilation and τ
decays into four pions. To make Bose symmetry and C in-
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variance manifest, we express all matrix elements in terms
of a reduced amplitude that reduces the size of the various
amplitudes roughly by a factor 4. The leading-order ampli-
tudes of O(p2) for both e+e− annihilation and τ decays are
presented in Sect. 3. The matrix elements of O(p4), con-
sisting of both one-loop and tree-level contributions, are
calculated in Sect. 4. The structure of the local amplitude
of O(p4) determines the resonance exchange amplitudes
generated by ρ and scalar exchange. The relevant chiral
resonance Lagrangian and the resulting matrix elements
are presented in Sect. 5. To extend the amplitudes into the
resonance region, additional contributions are necessary.
In Sect. 6 we analyse double ρ, ω and a1 exchange to obtain
the final amplitude. We collect the leading terms in the
low-energy expansion of the pion form factor and we resum
those terms to the complete ρ dominated form factor. The
energy dependent cross sections for the two channels and
the partial widths Γ (ρ0 → 2π0π+π−), Γ (ρ0 → 2π+2π−)
are analysed in Sect. 7. We compare our results with the
available data in the region 0.65 ≤ E(GeV) ≤ 1.05 and
we discuss the necessary steps for proceeding to higher en-
ergies. Our conclusions are summarized in Sect. 8. Three
appendices contain a discussion of the isospin relations,
a brief summary of the two possibilities for incorporating
spin-1 mesons in chiral Lagrangians and a collection of
numerical inputs for the calculation of cross sections.

2 Kinematics and symmetries

The amplitude for the process

e+(k+)e−(k−) → π(p1)π(p2)π(p3)π(p4)

is written in the form

M =
e2

q2 + iε
v(k+)γµu(k−)Jµ(p1, p2, p3, p4),

q = k+ + k− =
4∑

i=1

pi, (2.1)

with Jµ the pionic matrix element of the electromagnetic
current

Jµ(p1, p2, p3, p4) = 〈π(p1)π(p2)π(p3)π(p4)|Jµ
elm(0)|0〉.

(2.2)
The differential cross section is then given by (setting
me = 0)

dσ =
α2

32π6q6

(
4∏

i=1

d3pi

2Ei

)
δ(4)

(
q −

4∑
i=1

pi

)
lµνJµJ∗

ν ,

(2.3)
with the leptonic tensor

lµν = kµ
+kν

− + kµ
−kν

+ − q2

2
gµν . (2.4)

We will only be interested in the integrated cross sec-
tions σ(q2) where the appropriate statistical factors have

to be applied for the two possible channels 2π0π+π− and
2π+2π−.

With the charge assignments

π0(p1)π0(p2)π+(p3)π−(p4),

π+(p1)π+(p2)π−(p3)π−(p4),

a convenient set of Dalitz variables1 is

q2, s = (p1 + p2)2, ν = (p3 − p4) · (p1 − p2)/2,
ti = pi · q (i = 1, . . . , 4). (2.5)

There is a redundancy due to the relation
4∑

i=1

ti = q2, but

especially for displaying symmetries of the amplitudes it
is useful to keep the complete set. For compactness of
notation, we will often express amplitudes in terms of the
various scalar products instead of using s and ν.

In the isospin limit, which will be assumed throughout
this paper, the current matrix element for the 2π+2π−
channel can be expressed in terms of the matrix element
for the 2π0π+π− channel [13]:

〈π0(p1)π0(p2)π+(p3)π−(p4)|Jµ
elm(0)|0〉

:= Jµ(p1, p2, p3, p4), (2.6)
〈π+(p1)π+(p2)π−(p3)π−(p4)|Jµ

elm(0)|0〉
= Jµ(p1, p3, p2, p4) + Jµ(p1, p4, p2, p3)
+ Jµ(p2, p3, p1, p4) + Jµ(p2, p4, p1, p3). (2.7)

Likewise, the matrix elements of the charged vector cur-
rent relevant for τ decay can also be expressed in terms of
Jµ(p1, p2, p3, p4) [13]:

〈π−(p1)π−(p2)π+(p+)π0(p0)|V µ
cc(0)|0〉

=
√
2 {Jµ(p+, p1, p2, p0) + Jµ(p+, p2, p1, p0)} , (2.8)

〈π0(p1)π0(p2)π0(p3)π−(p−)|V µ
cc(0)|0〉

=
√
2 {Jµ(p1, p2, p−, p3) + Jµ(p1, p3, p−, p2)

+ Jµ(p2, p3, p−, p1)} , (2.9)

with the usual normalization of the charged vector current
V µ

cc = dγµu in terms of quark fields. We come back to
these matrix elements in Sect. 3 for the lowest-order chiral
expansion.

In addition to isospin, the electromagnetic current ma-
trix elements are also constrained by gauge invariance,
Bose symmetry and C invariance. It is sufficient to con-
sider these symmetries in the 2π0π+π− channel. Via the
isospin relation (2.7), the matrix element for the 2π+2π−
final state is then automatically gauge invariant, Bose
symmetric and odd under C. Of course, all these symme-
tries are implemented in CHPT, so the following relations
emerge automatically in the calculation and need not be
imposed a posteriori.

Gauge invariance (vector current conservation) implies

qµJµ(p1, p2, p3, p4) = 0. (2.10)
1 The main convenience is in making symmetries manifest as

discussed below
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Fig. 1. Tree diagrams for γ∗ → 4π. In this and subsequent fig-
ures solid lines denote pions; the wavy line stands for a virtual
photon

The remaining symmetry constraints for Jµ(p1, p2, p3, p4),

(Bose symmetry)
Jµ(p1, p2, p3, p4) = Jµ(p2, p1, p3, p4), (2.11)
(C invariance)
Jµ(p1, p2, p3, p4) = −Jµ(p1, p2, p4, p3), (2.12)

can always be made manifest by writing

Jµ(p1, p2, p3, p4)
= Aµ(p1, p2, p3, p4) +Aµ(p2, p1, p3, p4)
− Aµ(p1, p2, p4, p3)− Aµ(p2, p1, p4, p3) (2.13)

in terms of a reduced amplitude Aµ(p1, p2, p3, p4) that is
not further constrained by C invariance or Bose symmetry.
In this paper, we shall express all amplitudes in terms of
Aµ(p1, p2, p3, p4). This makes the sometimes quite elabo-
rate matrix elements considerably more compact. Another
simplification consists in dropping terms in Aµ(p1, p2, p3,
p4) and therefore also in Jµ(p1, p2, p3, p4) that are pro-
portional to qµ. Of course, such terms cannot contribute
to the differential cross section (2.3). Dropping such terms
may lead to seeming violations of gauge invariance. It goes
without saying that those terms can always be recovered
uniquely for a given matrix element by imposing current
conservation (2.10). This trivial remark will be relevant
when calculating τ decay matrix elements via the isospin
relations (2.8) and (2.9).

3 Amplitudes at leading order

At leading order in the low-energy expansion of the stan-
dard model, O(p2), the amplitudes for e+e− → 4π are
determined by “virtual” bremsstrahlung. The correspond-
ing diagrams shown in Fig. 1 are easily calculated from the
chiral Lagrangian of O(p2) for chiral SU(2) [2]:

L2 =
F 2

4
〈DµUDµU† + χU† + χ†U〉. (3.1)

The notation is standard (see, e.g., [14]). For our purposes,
the covariant derivative of the pion matrix field U contains
only the external electromagnetic field Aµ. The scalar field
χ is proportional to the light quark mass m̂ (we set mu =
md := m̂) and 〈. . .〉 denotes the 2-dimensional trace:

DµU = ∂µU +
i
2
eAµ[τ3, U ],

χ = 2Bm̂1 = M21 = M2
π [1 +O(m̂)]1,

Fπ = F [1 +O(m̂)] = 92.4MeV,

〈0|ūu|0〉 = −F 2B[1 +O(m̂)]. (3.2)

As discussed in Sect. 2, we express our results in terms
of the basic amplitude Aµ(p1, p2, p3, p4) defined in (2.13)
that determines all matrix elements of interest; see (2.6)–
(2.9). For the tree-level amplitude of O(p2) corresponding
to the diagrams of Fig. 1 one finds

Aµ
(2)(p1, p2, p3, p4) =

s − M2
π

F 2
π

pµ
3

2t3 − q2 . (3.3)

The complete current matrix element (2.6) at O(p2) is
therefore given by

Jµ
(2)(p1, p2, p3, p4) =

s − M2
π

F 2
π

(
2pµ

3

2t3 − q2 − 2pµ
4

2t4 − q2

)
.

(3.4)
We have used the physical quantities Mπ, Fπ in these ma-
trix elements. The renormalization of M,F to Mπ, Fπ is
an effect of at least O(p4) and will of course be included
in the amplitudes of next-to-leading order.

The matrix element (3.4) has an obvious interpreta-
tion: (s−M2

π)/F
2
π is the leading-order amplitude for π0π0

→ π+π− and the second factor reduces to the usual brems-
strahlung factor for real photons (q2 → 0). Although we
do not discuss τ → 4π decays in any detail here, we also
display the tree-level current matrix elements (2.8) and
(2.9), after repairing gauge invariance in (3.4) by adding
the appropriate amplitude proportional to qµ:

〈π−(p1)π−(p2)π+(p+)π0(p0)|V µ
cc(0)|0〉

=
√
2

F 2
π

{
− 2(pµ

+ + pµ
0 ) + 2Rµ(p0)p+ · (q − p0)

+
2∑

i=1

Rµ(pi)[2p0 · (q − pi)− M2
π ]

}
, (3.5)

〈π0(p1)π0(p2)π0(p3)π−(p−)|V µ
cc(0)|0〉

=
√
2

F 2
π

{
4pµ

− − M2
πRµ(p−)

−
3∑

i=1

Rµ(pi)[2p− · (q − pi)− M2
π ]

}
, (3.6)

Rµ(p) =
qµ − 2pµ

q2 − 2p · q .

In the chiral limit (Mπ = 0), these matrix elements
have the same structure as in the standard reference on
the subject [15]. There are two misprints in [15] that have
propagated into some of the subsequent literature: (2.9a)
and (2.9b) of [15] must be multiplied by the same factor√
2/(3

√
3). We have checked the matrix elements (3.5)

and (3.6) also by direct computation from the chiral La-
grangian (3.1) (adding the appropriate external charged
vector field).

The amplitudes of O(p2) define the low-energy limit
that all amplitudes must satisfy in order to be consistent
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Fig. 2. One-loop diagrams for γ∗ → 4π. The virtual photon is
to be appended on all possible lines and vertices. Wave function
renormalization diagrams are not shown

with QCD. By themselves, they cannot be expected to
provide a realistic approximation to the physical ampli-
tudes except in the immediate threshold region. Naive ex-
trapolation to the resonance region yields cross sections
that are much smaller than the available experimental
cross sections [16,17].

4 Next-to-leading order

At O(p4), the amplitudes consist of the usual two parts:
the first one from one-loop diagrams with vertices of the
lowest-order Lagrangian (3.1) and a second one from tree-
level diagrams with exactly one vertex of the chiral La-
grangian of O(p4):

Aµ
(4) = Aµ

(4)loop +Aµ
(4)tree. (4.1)

The loop amplitudes are calculated from diagrams of
the general form displayed in Fig. 2 where a virtual pho-
ton must be appended wherever possible. For the loop
amplitude we have used a compact representation of the
one-loop generating functional for chiral SU(2) with at
most three propagators [18] (of O(φ6) in the notation of
[2,3]). We have checked the result in the limit of a real
photon (q2 = 0) by comparing with the general formu-
las for radiative four-meson amplitudes [19]. Even the re-
duced amplitude Aµ

(4)loop is quite lengthy and we refer
to [18] for the explicit form. Our excuse for not repro-
ducing it here is that the one-loop amplitude will play a
relatively minor role for the cross sections in the experi-
mentally accessible region that we consider in this paper
(0.65 ≤ E(GeV) ≤ 1.05).

The relevant part of the chiral SU(2) Lagrangian of
O(p4) is given by [2] (in the notation of, e.g., [4])

L4 =
l1
4

〈uµuµ〉2 + l2
4

〈uµuν〉〈uµuν〉+ l3
16

〈χ+〉2

+
il4
4

〈uµχµ
−〉+ il6

4
〈fµν

+ [uµ, uν ]〉. (4.2)

The low-energy constants (LECs) l1, l2 appear in the (ra-
diative) ππ amplitudes, l3, l4 enter through renormaliza-
tion of the pion mass and decay constant and l6 governs
the pion charge radius term in the expansion of the pion
form factor. The diagrams are the same as in Fig. 1 except
that exactly one vertex from (4.2) must be inserted, with
at most one other vertex from the lowest-order Lagrangian
(3.1). The result expressed in terms of the reduced ampli-
tude Aµ

(4)tree is as follows:

F 4
πAµ

(4)tree(p1, p2, p3, p4) (4.3)

= 2l̃2(ν − t3)p
µ
1 +

{
2l̃1(s2 − 4sM2

π + 4M4
π)

+
l̃2
2
(s2 − 2t1t2 + 2t21 − 8t1ν + 4ν2 − (q2 − 2t3)2)

+ 2l̃3M4
π + 2l̃4(sM2

π − M4
π) + l̃6q

2(M2
π − s)

}
pµ
3

2t3 − q2 .

We have included in Aµ
(4)tree the chiral logs from the loop

diagrams. The quantities l̃i, the amplitude (4.3) and the
loop amplitude Aµ

(4)loop are then separately scale indepen-
dent:

l̃1 = lr1(µ)− 1
96π2 ln

M2
π

µ2 , l̃2 = lr2(µ)− 1
48π2 ln

M2
π

µ2 ,

l̃3 = lr1(µ) +
1

64π2 ln
M2

π

µ2 , l̃4 = lr4(µ)− 1
16π2 ln

M2
π

µ2 ,

l̃6 = lr6(µ) +
1

96π2 ln
M2

π

µ2 . (4.4)

For the numerical analysis, we use the following values
for the LECs that correspond to the one-loop analysis in
[20]:

l̃1 = −2.0× 10−3, l̃2 = 1.1× 10−2,

l̃3 = −4.6× 10−3, l̃4 = 2.8× 10−2,

l̃6 = −1.7× 10−2. (4.5)

The O(p4) cross sections constructed from the ampli-
tude

Aµ = Aµ
(2) +Aµ

(4)loop +Aµ
(4)tree (4.6)

are shown as dotted curves in Figs. 7 and 8 for the energy
range 0.65 ≤ E(GeV) ≤ 1.05. Comparison with the avail-
able data for the 2π+2π− channel [16] indicates that the
theoretical cross sections are still too small. The reason
is clear: the amplitudes of O(p4) contain only the low-
energy remainders of resonance exchange. We have to in-
clude meson resonance exchange explicitly if we want to
extrapolate the chiral amplitudes to the 1GeV region.

5 Resonance amplitudes generated at O(p4)

The renormalized LECs lri(µ) as well as their SU(3) coun-
terparts are known to be dominated by meson resonance
exchange [4] at typical scales µ ∼ Mρ. The tree-level am-
plitude (4.3) of O(p4) therefore specifies how to extend the
amplitude ofO(p4) into the resonance region. In the SU(3)
notation, the relevant part of the resonance Lagrangian is
given by [4]:

L[V (1−−), A(1++), S(0++)] = Lkin[V,A, S, S1] (5.1)

+
FV

2
√
2
〈Vµνf

µν
+ 〉+ iGV√

2
〈Vµνu

µuν〉+ FA

2
√
2
〈Aµνf

µν
− 〉

+ cd〈Suµuµ〉+ cm〈Sχ+〉+ c̃dS1〈uµuµ〉+ c̃mS1〈χ+〉.



G. Ecker, R. Unterdorfer: Four-pion production in e+e− annihilation 539

The octets of vector and axial-vector mesons V (1−−),
A(1++) are described by antisymmetric tensor fields Vµν ,
Aµν (see AppendixB). S, S1 are the scalar octet and sin-
glet fields, respectively. Resonance exchange dominance
of the LECs at a scale µ = Mρ amounts to the following
relations:

lr1(Mρ) = −G2
V

M2
ρ

+ 2

(
c̃2
d

M2
σ

+
c2
d

6M2
f0

)
,

lr2(Mρ) =
G2

V

M2
ρ

,

lr3(Mρ) = 8

(
c̃2
m − c̃dc̃m

M2
σ

+
c2
m − cdcm

6M2
f0

)
,

lr4(Mρ) = 8

(
c̃dc̃m

M2
σ

+
cdcm

6M2
f0

)
,

lr6(Mρ) = −FV GV

M2
ρ

. (5.2)

We have omitted the small contributions from kaon and
eta loops [4]. The axial coupling FA does not enter at this
order but will be needed in the following section. At the
SU(2) level, there is of course no distinction between the
SU(2) singlet in S and the SU(3) singlet S1. We associate
the singlet field in S with the f0 and the SU(3) singlet
with the putative σ meson. The overall contribution from
scalar exchange turns out to be very small so that the
issue of scalar mixing with or without glueballs [21] has
no impact on our amplitudes in practice.

We use Mρ = 0.775GeV and the following values for
the vector couplings FV , GV :

FV = 0.14 GeV, GV = 0.066 GeV. (5.3)

GV is obtained from the width Γ (ρ → ππ)= 0.15GeV.
The chosen value for FV is the mean value of two possible
determinations from Γ (ρ0 → e+e−) and from the pion
charge radius, respectively [4]. These values compare well
with the theoretically favoured values [5]

FV =
√
2Fπ = 0.13GeV, GV = Fπ/

√
2 = 0.065GeV.

(5.4)

In the scalar sector, we use [4]

cd = 0.032GeV, cm = 0.042GeV,

c̃i = ci/
√
3 (i = d,m), (5.5)

with the latter nonet relation holding in the large-Nc limit.
In the tree-level amplitude (4.3) of O(p4) the renor-

malized LECs lri(Mρ) are now set to zero and only the
chiral logs of (4.4) are kept. Instead, the explicit resonance
exchange diagrams in Fig. 3 are calculated giving rise to
amplitudes Aµ

ρ and Aµ
S , thereby matching the O(p4) am-

plitude to the resonance region:

F 4
πAµ

ρ (p1, p2, p3, p4)

Fig. 3. Resonance exchange diagrams contributing to the am-
plitudes of O(p4). The double lines denote ρ, σ and f0 mesons

= 4G2
V

{
pµ
3p1 · p2 − pµ

1p2 · p3

Dρ[(p1 + p3)2]

+
2pµ

3 [p1 · p4(p2 · p3 − t2)− p1 · p2(p3 · p4 − t4)]
(2t3 − q2)Dρ[(p2 + p4)2]

}
+ FV GV (p

µ
3 t1 − pµ

1 t3)
{

1
Dρ(q2)

− 1
Dρ[(p1 + p3)2]

}
+

FV GV q2(s − M2
π)

Dρ(q2)(2t3 − q2)
pµ
3 , (5.6)

F 4
πAµ

S(p1, p2, p3, p4)

=
∑

S=f0,σ

2[(s − 2M2
π)c

S
d + 2M2

πcS
m]2

3(2t3 − q2)DS(s)
pµ
3 , (5.7)

with scalar couplings

cf0
i = ci, cσ

i =
√
6c̃i (i = d,m) (5.8)

and propagators with energy dependent widths [7]:

DP (t) = M2
P − t − iMP ΓP (t), (5.9)

Γρ(t) =
Mρt

96πF 2
π

(1− 4M2
π/t)3/2θ(t − 4M2

π), (5.10)

ΓS(t) = ΓS
t(1− 4M2

π/t)1/2

M2
S(1− 4M2

π/M2
S)1/2 Θ(t − 4M2

π). (5.11)

In the numerical analysis, we take

Mf0 = 0.98GeV, Γf0 = 0.05GeV,

Mσ = 0.6GeV, Γσ = 0.6GeV. (5.12)

Finally, we recall that FV GV and cdcm are both positive
[4].

At this point, the amplitude Aµ(p1, p2, p3, p4) takes the
following form:

Aµ = Aµ
(2) +Aµ

(4)loop + Âµ
(4)tree +Aµ

ρ +Aµ
S , (5.13)

where the amplitude Âµ
(4)tree contains only the chiral logs

in (4.4) for µ = Mρ. The renormalized LECs lri(Mρ) have
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Fig. 4. Double ρ exchange diagrams generated by the La-
grangian (5.1)

been traded for the explicit resonance exchange ampli-
tudes Aµ

ρ , Aµ
S . The resulting cross sections are more real-

istic than the strictly O(p4) cross sections from the ampli-
tude (4.6), but they are still too small in comparison with
the available data around 1GeV [16,17].

6 Beyond O(p4)

There must be additional ingredients in the amplitudes
that make important contributions to the cross sections
already for energies below 1GeV. To the extent that the
LECs lri(Mρ) are known to be dominated by ρ (and scalar)
exchange as given in (5.2), those additional amplitudes
must vanish2 to O(p4). We will try to locate the dominant
contributions that appear first at O(p6), but in contrast to
the previous section we cannot claim completeness here.
At this order, also diagrams with more than one meson
resonance contribute. Even for single-resonance exchange,
a complete analysis of O(p6) is not available at present.

However, we may turn to existing phenomenological
treatments [9–11] for guidance. In addition to the obvious
ρ (and the less important scalar) exchange, the data [16,
17] clearly indicate the presence of ω and a1 exchange.

6.1 Double ρ exchange

The resonance Lagrangian (5.1) also generates amplitudes
starting at O(p6) with two ρ mesons exchanged. The cor-
responding diagrams are displayed in Fig. 4. The diagram
where the virtual photon couples to ρ+ρ− is actually re-
quired by gauge invariance because the (charged) vec-
tor mesons are dynamical fields here. The diagrams of
Fig. 3 produce a gauge invariant amplitude in the strict
O(p4) limit only where the resonance propagators shrink
to points. Although of different chiral order, the ampli-
tudes of Figs. 3 and 4 must be added for a meaningful
amplitude in the resonance region.

All couplings needed for the diagrams of Fig. 4 have
already been defined. The (reduced) double ρ exchange

2 Small additional contributions to the LECs of O(p4) are
possible and even expected, e.g. from ρ′ exchange

amplitude has the explicit form

F 4
πAµ

ρρ(p1, p2, p3, p4)

=
4G2

V

Dρ[(p1 + p3)2]Dρ[(p2 + p4)2]

×
{
pµ
2 (M

2
π + p1 · p3)(p1 − p3) · p4

+ pµ
3 (M

2
π + p2 · p4)p1 · (p2 − p4)

}
(6.1)

+
FV GV

Dρ(q2)Dρ[(p2 + p4)2]

×
{
pµ
2 q2(p1 − p3) · p4 + pµ

4 q2p2 · (p3 − p1)

+ [(p1 − p3)µ(t4 − t2)− (p2 − p4)µ(t3 − t1)]

× (M2
π + p2 · p4)

}
+

8FV G3
V q2

F 2
πDρ(q2)Dρ[(p2 + p4)2](2t3 − q2)

× pµ
3 {p1 · p4(p2 · p3 − t2)− p1 · p2(p3 · p4 − t4)} .

Putting together the lowest-order amplitude Aµ
(2) in

(3.3) and the single and double ρ exchange amplitudes
Aµ

ρ , Aµ
ρρ in (5.6) and (6.1), one observes that some terms

can be combined as the leading terms in the low-energy
expansion of the pion form factor in view of the relation
FV GV � F 2

π [5]:

Fπ(q2) = 1 +
FV GV q2

F 2
πDρ(q2)

+
i

Mρ
Γρ(q2) + . . . � M2

ρ

Dρ(q2)
.

(6.2)
We have included the leading-order absorptive part
iΓρ(q2)/Mρ that is contained in the one-loop amplitude
Aµ

(4)loop in one case and is of higher order in the other
case. Replacing the expansion terms on the left-hand side
of (6.2) by the usual ρ dominance form (the right-hand
side of (6.2)) is equivalent to the order considered. Of
course, the partial resummation yields a phenomenolog-
ically much more realistic amplitude. A similar resumma-
tion applies to the scalar exchange amplitude. We there-
fore express the combined ρ and scalar exchange ampli-
tude in the following form:(

Aµ
(2) +Aµ

S

)
M2

ρ/Dρ(q2) + Âµ
ρ + Âµ

ρρ. (6.3)

The modified single and double ρ exchange amplitudes are
now given by

F 4
π Âµ

ρ (p1, p2, p3, p4)

= 4G2
V

{
pµ
3p1 · p2 − pµ

1p2 · p3

Dρ[(p1 + p3)2]
(6.4)

+
2pµ

3 [p1 · p4(p2 · p3 − t2)− p1 · p2(p3 · p4 − t4)]M2
ρ

(2t3 − q2)Dρ[(p2 + p4)2]Dρ(q2)

}

+ FV GV (p
µ
3 t1 − pµ

1 t3)
{

1
Dρ(q2)

− 1
Dρ[(p1 + p3)2]

}
,

F 4
π Âµ

ρρ(p1, p2, p3, p4)
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ρ ω ρ

Fig. 5. VMD diagram for ω exchange

=
4G2

V

Dρ[(p1 + p3)2]Dρ[(p2 + p4)2]

×
{
pµ
2 (M

2
π + p1 · p3)(p1 − p3) · p4 (6.5)

+ pµ
3 (M

2
π + p2 · p4)p1 · (p2 − p4)

}
+

FV GV

Dρ(q2)Dρ[(p2 + p4)2]

×
{
pµ
2 q2(p1 − p3) · p4 + pµ

4 q2p2 · (p3 − p1)

+
[
(p1 − p3)µ(t4 − t2)− (p2 − p4)µ(t3 − t1)

]
× (M2

π + p2 · p4)
}
.

The leading-order absorptive part of the pion form factor
must be subtracted from the one-loop amplitude yielding
a modified loop amplitude Âµ

(4)loop.

6.2 ω exchange: vector meson dominance

Vector meson dominance (VMD) for ω decays postulates
the dominant role of an ωρπ coupling [22,23]. We write
the corresponding Lagrangian (unique to lowest order in
derivatives) as

L(ωρπ) = gωρπεµνρσωµ∂νπ · ρρσ. (6.6)

In this case, it is more convenient to describe the ω in
terms of a vector field ωµ (see AppendixB).

The decay ω → ρ0π0 → π0γ proceeds with a rate

Γ (ω → π0γ) =
αg2

ωρπF 2
V

6M3
ωM4

ρ

(
M2

ω − M2
π

)3
. (6.7)

The measured partial width [24] corresponds to |gωρπ| =
5.0. On the other hand, the dominant decay chain ω →
ρπ → 3π leads to |gωρπ| = 5.7. A small direct ω → 3π
amplitude is allowed, but VMD clearly accounts for the
dominant features of both decays.

For e+e− → 4π, the relevant ω exchange diagram is
shown in Fig. 5. It gives rise to a (reduced) amplitude

Aµ
ω(p1, p2, p3, p4)

=
8FV GV g2

ωρπ

F 2
πDρ(q2)Dω[(q − p1)2]

× {−pµ
2 t4p1 · p3 + pµ

3 (t4p1 · p2 − t2p1 · p4)}
× {

D−1
ρ [(p2 + p3)2]

+ D−1
ρ [(p2 + p4)2] +D−1

ρ [(p3 + p4)2]
}

. (6.8)

In view of the small value of Γω = 8.44MeV [24] we
employ an energy independent width in the propagator
function Dω[(q − p1)2]. The amplitude (6.8) completely
dominates the cross section for e+e− → 2π0π+π− around
1GeV in accordance with experimental findings [17,11]. In
order to appreciate the size of this amplitude of O(p6), we
compare it to a typical ρ exchange amplitude of O(p4) as
given in (5.6). By naive chiral counting, the dimensionless
quantity cω defined by

cω

(4πFπ)2
=

24g2
ωρπF 2

π

M2
ωM2

ρ

(6.9)

would be expected to be of O(1). With |gωρπ| = 5.7 one
finds instead |cω| = 24, quite a drastic deviation from
naive chiral counting. The sign of the ω exchange ampli-
tude (6.8) is fixed by the positive sign of FV GV [4,5]. Of
course, the corresponding amplitude due to φ exchange is
completely negligible.

6.3 a1 exchange

Although ω exchange dominates the cross section for the
2π0π+π− final state, it does not contribute to the other
channel, 2π+2π−. Here a1 exchange will play an impor-
tant role. We follow the usual VMD assumption that the
dominant decay mode a1 → 3π proceeds via an interme-
diate ρ.

Contrary to ωρπ, there are several possible chiral cou-
plings for the a1ρπ vertex. The ideal place to analyse this
vertex is the process τ → ντ3π and such an analysis is
under way [25]. In the tensor field formalism, there are al-
together five a priori independent a1ρπ couplings of lowest
possible chiral order [25]. Two of them give the same am-
plitudes in our case, and another one is proportional to
M2

π and therefore vanishes in the chiral limit [25]. We will
restrict ourselves here to the remaining terms that boil
down to the following Lagrangian for the charged a1 fields
(the neutral a1 cannot be exchanged in the diagrams of
Fig. 6):

L(a+
1 → ρπ) =

ic2

Ma1

a+µν
1

(
ρ0

νλ∂µ∂λπ− − ρ−
νλ∂µ∂λπ0)

+
ic3

Ma1

a+µν
1

(
∂λρ0

νλ∂µπ− − ∂λρ−
νλ∂µπ0)

+
ic4

Ma1

a+µν
1

(
∂µρ0

λν∂
λπ− − ∂µρ−

λν∂
λπ0)

+ h.c., (6.10)

with dimensionless couplings c2, c3, c4.
The analysis of τ → ντ3π that should determine or

at least relate the constants ci is not yet available [25].
In order to proceed, we make the simplifying assumption
that the couplings are all equal:

c2 = c3 = c4. (6.11)

From the decay width Γ (a1 → ρπ → 3π), accounting for
the finite ρ width, we find

|c2| = 319 [Γ (a1 → 3π)/0.5GeV]1/2. (6.12)
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a1 ρ ρ a1 ρ

Fig. 6. a1 exchange diagrams

The surprisingly large value of |c2| is due to the fact that
the (off-shell) a1 → ρπ → 3π vertex function vanishes in
the chiral limit for the choice (6.11), as long as the pions
are on-shell. Although this property is certainly not re-
quired by chiral symmetry, it has interesting implications
for the high-energy behaviour of the τ → ντ3π amplitude
[25]. In this case, the neglected coupling proportional to
M2

π should be added in a complete analysis of the a1ρπ
vertex. We have also investigated other choices for the cou-
plings ci: the resulting cross sections are always smaller
than for the choice (6.11).

As shown in Fig. 6, there are two a1 exchange diagrams
that must be taken into account here. The first one has
a direct a1πγ coupling FA defined in the resonance La-
grangian (5.1). We take the theoretically favoured value [5]
FA = Fπ for this coupling. In addition, also the a1ρπ cou-
plings in (6.10) contribute to the radiative decay a1 → πγ.
For the choice (6.11) we obtain an effective coupling

F eff
A = FA − c2FV FπM2

π

Ma1M
2
ρ

, (6.13)

with the two terms approximately equal in magnitude. Re-
quiring constructive interference (sgn(c2FAFV Fπ) < 0),
the resulting partial width Γ (a1 → πγ) is larger than the
PDG value of 640 keV (based on a single experiment) by
about a factor 2.5 for Γ (a1 → 3π) = 0.5GeV.

The (reduced) amplitude Aλ
a1
(p1, p2, p3, p4) from the

two diagrams in Fig. 6 is in an obvious notation given by

Aλ
a1
(p1, p2, p3, p4) =

V λµν
L Nµνρσ(q − p4)V

ρσ
R

M2
a1

Da1 [(q − p4)2]Dρ[(p1 + p3)2]
,

V λµν
L =

FV

Ma1Dρ(q2)

[
c2p

µ
4 (t4g

λν − pλ
4qν)

−c3q
2pµ

4gλν + c4t4q
µgλν

]
−FA

Fπ
qµgλν ,

Nµνρσ(k) = gµρgνσ(M2
a1

− k2) + gµρkνkσ

−gµσkνkρ − (µ ↔ ν),

V ρσ
R =

2GV

F 2
πMa1

{
c2(p1 · p2p

ρ
2p

σ
3 − p2 · p3p

ρ
2p

σ
1 )

+c3(p1 · p3 +M2
π)p

ρ
2(p

σ
3 − pσ

1 )

+c4p2 · (p1 + p3)p
ρ
3p

σ
1

}
. (6.14)

The relative signs in this amplitude are determined by the
choice (6.11), the constructive interference in (6.13) and
by FV GV > 0 [4,5].

The energy dependence of the a1 width Γa1(t) has also
a considerable numerical impact. Awaiting the results of

[25], we assume for the present analysis the functional
form (all numbers are to be understood in appropriate
units of GeV) suggested by Kühn and Santamaria [26]:

Γa1(t) = Γa1g(t)/g(M
2
a1
),

g(t) = (1.623t+ 10.38− 9.23/t+ 0.65/t2)
×Θ[t − (Mρ +Mπ)2] + 4.1(t − 9M2

π)
3

×[1− 3.3(t − 9M2
π) + 5.8(t − 9M2

π)
2]

×Θ(t − 9M2
π)Θ[(Mρ +Mπ)2 − t]. (6.15)

Putting all contributions together, we arrive at our
final amplitude

Aµ
final =

{
Aµ

(2) +Aµ
S

}
M2

ρ/Dρ(q2) + Âµ
(4)loop + Âµ

(4)tree

+ Âµ
ρ + Âµ

ρρ +Aµ
ω +Aµ

a1
. (6.16)

This amplitude has the correct low-energy behaviour to
O(p4) and is expected to contain the relevant ingredients
for an extrapolation to the 1GeV region.

7 Cross sections and decay rates

In Fig. 7 we compare our results for the cross section
σ(e+e− → 2π+2π−) with available data taken from [16].
The dotted curve corresponds to the strictly O(p4) ampli-
tude (4.6) and the full curve is the cross section for the
final amplitude (6.16). Whereas the dotted curve is defi-
nitely too low, the full curve agrees well with the experi-
mental data up to 1GeV. The more pronounced rise of the
full curve is mainly due to a1 exchange. The ρ exchange
amplitude generated at O(p4) is also important, and to
a lesser extent also the lowest-order amplitude with re-
summed pion form factor. Loops and chiral logs are much
less important. Finally, scalar exchange contributes very
little to the cross section and double ρ exchange does not
contribute at all in this channel.

At low energies, where our amplitude should be most
reliable, the predicted cross section is below the shaded
band in Fig. 7. That band [16] describes an extrapolation
from the data at higher energies [17] with a non-chiral
resonance model.

The analogous theoretical results for σ(e+e− → 2π0π+

π−) are shown in Fig. 8. Although there are so far no data
in the region below 1GeV, the theoretical cross section
(full curve) connects well with the data starting at 1GeV
[17]. For this channel, the much steeper rise compared to
the 2π+2π− mode is almost exclusively due to ω exchange.
a1 exchange, even though less important here, interferes
constructively with ω exchange in the 1GeV region. All
other contributions are very small there.

Near the ρ pole, the amplitudes are of course com-
pletely dominated by the resonant parts containing the
propagator function D−1

ρ (q2). The cross sections at E =
Mρ therefore determine the branching ratios for ρ0 → 4π
according to the general formula

BR(ρ0 → f) =
M2

ρ σ(e+e− → f)|E=Mρ

12πBR(ρ0 → e+e−)
. (7.1)
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Fig. 7. Comparison of data [16] (left figure) and predictions (right figure, see text) for the cross section σ(e+e− → 2π+2π−)
for 0.65 ≤ E(GeV) ≤ 1.05
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Fig. 8. Theoretical predictions for the cross section σ(e+e− →
2π0π+π−) for 0.65 ≤ E(GeV) ≤ 1.05

For the channel 2π+2π−, the relevant contributions are
the lowest-order amplitude with pion form factor, sin-
gle ρ and a1 exchange. There is a destructive interfer-
ence between the modified lowest-order amplitude on the
one hand and the two single-resonance exchange ampli-
tudes at E = Mρ. Except for a1 exchange, this interfer-
ence is dictated by the QCD structure of O(p4). Although
the a1 amplitude depends on our assumption (6.11) for
the a1ρπ vertex the relative sign to the other two ampli-
tudes is also fixed. The situation is a little different in the
2π0π+π− channel because of the additional ω exchange.
In this channel, the interference pattern is: lowest-order
amplitude with pion form factor + a1 exchange – single ρ
exchange – ω exchange. Although the couplings involved
are relatively well known we assign a 40% error to the

calculated branching ratios in view of the destructive in-
terferences:

BR(ρ0 → 2π+2π−) = (6.7± 2.7)× 10−6,

BR(ρ0 → 2π0π+π−) = (5.0± 2.0)× 10−6. (7.2)

The result for the 2π+2π− mode agrees within errors with
the experimental value [24] (extracted from the cross sec-
tion in Fig. 7 at E = Mρ) although our mean value is
almost a factor 3 smaller. For the 2π0π+π− channel there
is only an experimental upper limit [24] that is compatible
with (7.2). There is a wide range of model predictions for
the 4π decay modes of the ρ as reviewed in [27].

We have plotted the cross sections only for energies
<∼ 1GeV because our amplitudes do not have the correct
high-energy behaviour. This manifests itself already in the
1 to 2GeV region, where our cross sections exceed the
experimental cross sections [17].

Scaling all four-momenta in the same way and requir-
ing that σ(e+e− → 4π) decreases at least as fast as (most
likely faster than) 1/E2 at large energies to satisfy the
asymptotic QCD constraint, one finds that the basic cur-
rent matrix element Jµ(p1, p2, p3, p4) in (2.6) must vanish
at large energies at least as 1/E. This criterion is not even
met by the lowest-order matrix element (3.4) although it
is satisfied by the modified lowest-order amplitude in (6.3)
due to the pion form factor.

In addition to resummations of parts of the ampli-
tude, additional higher-mass states must be included in
order to access the region up to 2GeV and to satisfy the
high-energy constraints of QCD. The Particle Data Group
lists [24] many such resonances with the appropriate quan-
tum numbers, e.g., ρ(1450), ρ(1700), f0(1370), f0(1500),
f0(1710), ω(1420), ω(1650) and states with higher spins.
In the spirit of duality, all those states are expected to
conspire to produce the right asymptotic behaviour of the
amplitudes at high energies.
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8 Conclusions

We have performed the first calculation of the processes
e+e− → 4π and τ → ντ4π with the correct structure to
O(p4) in the low-energy expansion of the standard model.
In addition to the proper low-energy structure, CHPT au-
tomatically produces amplitudes with all relevant sym-
metries of the standard model, in our case (spontaneously
and softly broken) chiral symmetry, gauge invariance,
Bose symmetry and C invariance.

Although the chiral amplitude to O(p4) is only valid
close to threshold it contains information on how to ex-
trapolate to the resonance region. This information on ρ
and scalar exchange is however not sufficient to describe
the e+e− cross sections up to energies of around 1GeV.
We have therefore included as additional contributions ω,
a1 and double ρ exchange that first show up at O(p6).
All necessary couplings were determined from the decay
widths of the various resonances involved.

The predicted cross sections for E <∼ 1GeV and the
branching ratios BR(ρ0 → 4π) are in good agreement with
the available data. Our amplitudes do not have an accept-
able high-energy behaviour, so that additional ingredients
are needed (such as higher-mass resonance exchange) to
make predictions in the phenomenologically interesting re-
gion up to 2GeV.

In the isospin limit, the τ decay amplitudes can be
calculated from the annihilation amplitude for the channel
2π0π+π− [13]. The comparison with τ decay data will
be postponed until the proper high-energy behaviour has
been implemented.
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Appendix

A Isospin relations

From the isospin relations [13] (2.6)–(2.9) for the four
possible final states it is evident that the amplitude for
the 2π0π+π− channel is sufficient to obtain the remaining
three amplitudes. From the observation that ω exchange
cannot contribute to the 2π+2π−, 3π0π− modes one finds
immediately that none of those latter modes is sufficient
to calculate the remaining ones.

The only nontrivial question3 concerns the channel
2π−π+π0. At first sight, one would expect that from the
sum of two current matrix elements in (2.8) one cannot de-
termine Jµ(p1, p2, p3, p4) itself. However, one has to take
into account the symmetry relations for Jµ(p1, p2, p3, p4).
It is the purpose of this appendix to show explicitly that
knowledge of the amplitude for the 2π−π+π0 mode is
also sufficient to determine all four matrix elements in
the isospin limit.

3 We thank Hans Kühn for raising this question

For this purpose, we write the general decomposition
of Jµ(p1, p2, p3, p4) as

Jµ(p1, p2, p3, p4)
= pµ

1B(p1, p2, p3, p4) + pµ
2B(p2, p1, p3, p4)

+ pµ
3C(p1, p2, p3, p4)− pµ

4C(p1, p2, p4, p3) (A.1)

in terms of two invariant amplitudes that satisfy the con-
straints

B(p1, p2, p3, p4) = −B(p1, p2, p4, p3),
C(p1, p2, p3, p4) = C(p2, p1, p3, p4), (A.2)

due to charge conjugation invariance and Bose symmetry.
Gauge invariance leads to a further relation between B
and C, but we do not need this relation here.

The isospin relation (2.8) can now be written as

〈π−π−π+π0|V µ
cc(0)|0〉/

√
2

= pµ
+D(p+, p1, p2, p0) + pµ

1F (p+, p1, p2, p0)
+ pµ

2F (p+, p2, p1, p0)− pµ
0G(p+, p1, p2, p0), (A.3)

with

D(p+, p1, p2, p0) = B(p+, p1, p2, p0) +B(p+, p2, p1, p0),
F (p+, p1, p2, p0) = B(p1, p+, p2, p0) + C(p+, p2, p1, p0),
G(p+, p1, p2, p0) = C(p+, p1, p0, p2) + C(p+, p2, p0, p1).

(A.4)

With the symmetry relations (A.2) one easily verifies

2B(p1, p2, p3, p4) = D(p1, p3, p2, p4)
+ F (p2, p1, p3, p4)− F (p3, p1, p2, p4),
2C(p1, p2, p3, p4) = −D(p3, p2, p1, p4)
+ F (p1, p3, p2, p4) + F (p2, p3, p1, p4). (A.5)

Therefore, the amplitude for the 2π0π+π− channel can
be obtained from the 2π−π+π0 amplitude. Consequently,
knowledge of the 2π−π+π0 mode is enough to determine
the other three amplitudes in the isospin limit.

B Vector and axial-vector mesons

Spin-1 mesons can be described either by the more con-
ventional vector (or axial-vector) fields Vµ or by antisym-
metric tensor fields Vµν . For matching resonance exchange
amplitudes with standard CHPT amplitudes, the choice
of fields is a matter of convenience. The tensor field for-
malism has the advantage of producing immediately the
correct LECs of O(p4) [2,4]. On the other hand, single-
resonance exchange that contributes first at O(p6) such
as ω exchange is better described by vector fields [5,28].
The two descriptions are equivalent but the transforma-
tion from one formalism to the other involves the introduc-
tion of explicit local amplitudes. Those local terms may
be avoided by employing the proper formalism.

We recall first the usual normalization of a conven-
tional massive vector field Vµ for a vector meson of mass
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M , with polarization vector εµ(p), and the associated
propagator:

〈0|Vµ(0)|V, p〉 = εµ(p), (B.1)
〈0|T{Vµ(x), Vν(0)}|0〉 (B.2)

= i
∫

d4ke−ikx

(2π)4(M2 − k2 − iε)
(
gµν − kµkν/M

2) .
The same spin-1 particle can also be described by an

antisymmetric tensor field Vµν . The corresponding one-
particle matrix element and the propagator are given by
[4]

〈0|Vµν(0)|V, p〉 = iM−1{pµεν(p)− pνεµ(p)}, (B.3)
〈0|T{Vµν(x), Vρσ(0)}|0〉 (B.4)

= iM−2
∫

d4ke−ikx

(2π)4(M2 − k2 − iε)
× [gµρgνσ(M2 − k2) + gµρkνkσ − gµσkνkρ − (µ ↔ ν)

]
.

In many cases, the tensor field propagator can be simpli-
fied. Whenever the ρ meson couples either directly to the
(virtual) photon or to two pions the transverse part of
(B.4) does not contribute [7] and the ρ propagator may
be replaced by

〈0|T{ρµν(x), ρρσ(0)}|0〉 (B.5)

= i
∫

d4ke−ikx

(2π)4(M2 − k2 − iε)
[gµρgνσ − gµσgνρ] .

This happens to be the case for all diagrams considered
involving ρ exchange. The simplification does not apply
for the a1 propagator in the diagrams of Fig. 6.

C Numerical input

In this appendix we collect the numerical values of masses
and coupling constants that we have used for the calcula-
tion of cross sections.

Chiral LECs

Fπ = 0.0924GeV, l̃1 = −2.0× 10−3,
l̃2 = 1.1× 10−2, l̃3 = −4.6× 10−3,
l̃4 = 2.8× 10−2, l̃6 = −1.7× 10−2.

Vector mesons

Mρ = 0.775GeV, FV = 0.14GeV,
GV = 0.066GeV, Mω = 0.783GeV,
Γω = 0.00844GeV, gωρπ = 5.7.

Axial-vector meson

Ma1 = 1.23GeV, Γa1 = 0.5GeV,
FA = Fπ, c2 = c3 = c4 = 319.

Scalar mesons

Mf0 = 0.98GeV, Γf0 = 0.05GeV,
Mσ = 0.6GeV, Γσ = 0.6GeV,
cd = 0.032GeV, cm = 0.042GeV,
c̃i = ci/

√
3 (i = d,m).
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7. D. Gómez Dumm, A. Pich, J. Portolés, Phys. Rev. D 62,

054014 (2000)
8. J.A. Oller, E. Oset, J.E. Palomar, Phys. Rev. D 63, 114009

(2001)
9. R. Decker, P. Heiliger, H.H. Jonsson, M. Finkemeier, Z.

Phys. C 70, 247 (1996)
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